TRIDONIC

LED Driver

Linear / area fixed output

Driver LC 69W 350-500mA flexC Ip ADV

ADVANCED series

Product description

- Built-in constant current LED Driver
- New version DC operating with EL marking
- Adjustable output current between 350 and 500 mA
- Max. output power 69 W
- Up to 91 \% efficiency
- Nominal life-time up to 100,000 h
- For luminaires of protection class I and protection class II
- Temperature protection as per EN 61347-2-13 C5e
- 5-year guarantee

Housing properties

- Low-profile metal casing with white cover
- Type of protection IP20

Interfaces

- Terminal blocks: 45° push terminals

Functions

- Overload protection
- Short-circuit protection
- No-load protection
- Burst protection voltage 1 kV
- Surge protection voltage $1 \mathrm{kV}(\mathrm{L}$ to N$)$
- Surge protection voltage 2 kV (L/N to earth)
- Suitable for emergency lighting systems acc. to EN 50172

Typical applications

- For linear/area lighting in office applications

\rightarrow

Standards, page 4
Wiring diagrams and installation examples, page 4

Driver LC 69W 350-500mA flexC Ip ADV
ADVANCED series

Rated supply voltage	220-240 V
AC voltage range	198-264 V
DC voltage range	176-280 V
Max. input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	0.36 A
Typ. input current (at $230 \mathrm{~V}, 0 \mathrm{~Hz}$, full load)	0.36 A
Leakage current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< $450 \mu \mathrm{~A}$
Mains frequency	$0 / 50 / 60 \mathrm{~Hz}$
Overvoltage protection	$320 \mathrm{~V} \mathrm{AC}$,
Max. input power	76.5 W
Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	76.2 W
Min. output power	21 W
Max. output power	69 W
Typ. efficiency (at $230 \mathrm{~V} / 50 \mathrm{~Hz} /$ full load) ${ }^{\text {(1) }}$	91\%
λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) ${ }^{(1)}$	0.95
Output current tolerance ${ }^{(2)}$	± 7.5 \%
Max. output current peak ${ }^{(3)}$	soutput current + 10%
Max. output voltage	250 V
THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	< 20 \%
Output LF current ripple ($<120 \mathrm{~Hz}$)	$\pm 5 \%$
Time to light (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 500 \mathrm{~ms}$
Time to light (DC mode)	$<1,000 \mathrm{~ms}$
Switchover time (AC/DC)	< 500 ms
Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	$\leq 0.5 \mathrm{~s}$
Hold on time at power failure (output)	0 s
Ambient temperature ta (at life-time 100,000 h)	$40^{\circ} \mathrm{C}$
Storage temperature ts	$-40 \ldots+80^{\circ} \mathrm{C}$
Dimensions L \times W $\times \mathrm{H}$	$280 \times 30 \times 21 \mathrm{~mm}$
Hole spacing D	268 mm

Ordering data

Type	Article number	Packaging, carton	Packaging, low volume	Packaging, high volume	Weight per pc.
LC 69W 350-500mA flexC Ip ADV	$\mathbf{8 7 5 0 0 5 9 9}$	$50 \mathrm{pc}(\mathrm{s})$.	$\mathbf{9 0 0} \mathrm{pc}(\mathrm{s})$.	$2,700 \mathrm{pc}(\mathrm{s})$.	0.18 kg

Specific technical data

Type	Output current ${ }^{(2)}$	Min. forward voltage	Max. forward voltage	Max. output power	Typ. power consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Typ. current consumption (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Max. casing temperature \dagger	Ambient temperature ta max.	I-out select	Resistor ${ }^{(4)}$
LC 69W 350-500mA flexC Ip ADV	350 mA	60 V	142 V	49.7 W	54.6 W	246 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-2	ADV Type A
	375 mA	60 V	142 V	53.3 W	59.1 W	266 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-2	ADV Type B
	400 mA	60 V	142 V	56.8 W	62.0 W	277 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	0-1	ADV Type A
	450 mA	60 V	138 V	62.1 W	69.7 W	311 mA	$75^{\circ} \mathrm{C}$	$-20 . . .+50^{\circ} \mathrm{C}$	0-2	ADV Type C
	500 mA	60 V	138 V	69.0 W	76.0 W	337 mA	$75^{\circ} \mathrm{C}$	$-20 \ldots+50^{\circ} \mathrm{C}$	open	-

[^0]ADV Plug for output current select

Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver serie LC flexC ADV; not compatible with l-select (generation 1) and I-select 2 (generation 2)
- Resistor is base isolated
- When using your own resistors, make sure the resistor must be isolated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ additional to output current tolerance
- Hot plug of the resistor is not permitted
- For detailed current setting see table "Specific technical data" of the respective LED Driver and chapter 3.8 Current setting

Ordering data							
Type	Article number	Colour of X area	Colour of Y area	Marking	Resistor value	Packaging bag	Weight per pc.
ADV Plug Type A YL	$\mathbf{2 8 0 0 1 7 7 1}$	Yellow	Yellow	A	0.0Ω	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type B YL	$\mathbf{2 8 0 0 1 7 7 2}$	Yellow	Black	B	$3.16 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
ADV Plug Type C YL	$\mathbf{2 8 0 0 1 7 7 3}$	Yellow	Purple	C	$28.7 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 62384
According to EN 50172 for use in central battery systems
According to EN 60598-2-22 suitable for emergency lighting installations

2. Thermal details and life-time

2.1 Expected life-time

Expected life-time

Type	ta	$\mathbf{4 0}{ }^{\circ} \mathrm{C}$	$\mathbf{5 0} 0^{\circ} \mathrm{C}$	$\mathbf{6 0}{ }^{\circ} \mathrm{C}$
LC 69W 350-500mA flexC Ip ADV	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	x
	Life-time	$100,000 \mathrm{~h}$	$50,000 \mathrm{~h}$	x

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than 10%.

3. Installation / wiring

3.1 Circuit diagram

$220-240 \mathrm{~V}$
$0 / 50 / 60 \mathrm{~Hz}$

3.2 Wiring type and cross section

The wiring can be stranded wires with ferrules or rigid wires with a cross section of $0.5-1.5 \mathrm{~mm}^{2}$.
Strip 8.5 - 9.5 mm of insulation from the cables to ensure perfect operation of the push-wire terminals.

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. lenght of output wires is 2 m .
- Incorrect wiring can damage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).
- The current selection has to be installed in the accordance to the requirement of low voltage installation.

3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or output switching of LEDs is not permitted and may cause a very high current to the LEDs.

3.7 Earth connection

The earth connection is conducted as protection earth (PE). The LED Driver can be earthed via metal housing. If the LED Driver will be earthed, protection earth (PE) has to be used. There is no earth connection required for the functionality of the LED Driver. Earth connection is recommended to improve following behaviour.

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

For Class I application, protection earth need to connected with the metal housing (bottom part).

For Class II application, protection earth is no need to be connected, below 2 scenarios should be considered:

- If the LED Driver housing is screw on a metal part inside the luminaires, both LED Driver and LED module must be isolated.
- If the LED Driver housing is screw on a plastic part inside the luminaires, the LED module need to be isolated.

LED Driver

3.8 Current setting

350 mA : Terminal 0 and 2 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

375 mA: Terminal 0 and 2 connected with resistor ADV Plug Type B BR (article number: 28001772)

400 mA : Terminal 0 and 1 connected with 0Ω wire (max. 6 cm length) or resistor ADV Plug Type A BR (article number: 28001771)

450 mA : Terminal 0 and 2 connected with resistor ADV Plug Type C BR (article number: 28001773)

$\mathbf{5 0 0} \mathbf{~ m A}$: All terminals open

3.9 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

4. Electrical values

Test at $230 \vee 50 \mathrm{~Hz}$.

4.1 Efficiency vs load

4.2 Power factor vs load

4.3 Input power vs load

LED Driver

Linear / area fixed output

4.4 Input current vs load

4.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.6 Maximum loading of automatic circuit breakers

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$\mathrm{I}_{\text {max }}$	Time
LC 69W 350-500mA flexC Ip ADV	30	40	50	63	18	24	30	38	33 A	250 нs

4.7 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)
in \%

	THD	3.	5	7	9.	11.
LC 69W 350-500mA flexC Ip ADV	<18	<15	<5	<4	<3	<2

Acc. to 6100-3-2. Harmonics < 5 mA or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

5. Functions

5.1 Short-circuit behaviour

In case of a short circuit on the output side (LED) the LED Driver switches into hic-cup mode. After elimination of the short-circuit fault the LED Driver will recover automatically.

5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

5.3 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and LED may flicker. After elimination of the overload, the nominal operation is restored automatically.

5.4 DC emergency operation

The LED Driver is designed to operate on DC voltage and pulsed DC voltage. For a reliable operation, make sure that also in DC emergency operation the LED Driver is run within the specified conditions.

Light output level in DC operation (EOF ${ }_{j}$): 100 \% (cannot be adjusted)
The voltage-dependent input current of Driver incl. LED module is depending on the used load.

The nominal voltage-dependent no-load current of Driver (without or defect LED module) is for:
AC: $<50 \mathrm{~mA}$
DC: $<5 \mathrm{~mA}$

6. Miscellaneous

6.1 Isolation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an isolation test with 500 V Dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The isolation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

6.2 Conditions of use and storage

Humidity:	5% up to max. 85%, not condensed (max. 56 days/year at 85%)
Storage temperature:	$-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

6.3 Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data
Guarantee conditions at www.tridonic.com \rightarrow Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

[^0]: (1) Test result at 350 mA .
 (2) Output current is mean value
 (3) Test result at $25^{\circ} \mathrm{C}$.
 (4) Type A is a short circuit plug (0Ω)

